Modelo epidemiológico (COVID-19)
Los datos fueron tomados de www.isciii.es.El modelo se tomó de arXiv:2003.10047. Ajustado a la población española.
La simulación comienza el día 31 de enero de 2020.
Los contactos pueden reducirse para simular las medidas de contención impuestas el 14 de febrero de 2020.
Autor: Guido Santos.
Este modelo es una simplificación. El autor no se hace responsable del uso por terceros de esta herramienta.
Society Game, by Guido Santos
Básicamente consiste en una población donde hay trabajadores (W), dependientes (D) y violentos (V). La tabla de pagos indica qué es lo que gana cada uno cuando se encuentra una pareja de ciudadanos al azar. P(X,Y) es el pago al tipo X cuando interacciona con otro de tipo Y:P(W,W) = p; P(W,D) = -t; P(W,V) = -r-d-s
P(D,W) = t; P(D,D) = 0; P(D,V) = -d-r
P(V,W) = r-d+tp; P(V,D) =r-d; P(V,V) = r-d
donde
p: production,
d: damage afer robbing,
r: robbery gain,
s: taxes.
El sistema de ecuaciones diferenciales
Partimos de una composición de los tres tipos de jugadores (W,D,V) visto como un vector de proporciones que han de sumar 1. Asumimos que para cada tipo de jugador$\dot X = X (Pago(X) - PagoMedio)$
El juego como un sistema evolucionando
Juega un poco cambiando los parámetros del juego. W(0) es la proporción inicial de trabajadores. D(0) es la proporción de dependientes del resto (1 - W(0)). Lo que reste hasta uno serán violentos.Muchas gracias al profesor Carlos González Alcón por facilitarme el código en un formato interactivo y amigable. Gracias a él ahora ustedes pueden jugar con el modelo.
Malaria intra-host model, by Guido Santos
Reference: Santos G, Torres NV (2013) New Targets for Drug Discovery against Malaria. PLoS ONE 8(3): e59968. doi:10.1371/journal.pone.0059968. Published model available here (http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0059968).The model simulates the infection by malaria parasite inside a patient. It displays the concentration of parasites in the blood streem as well as the concentration of erythrocytes and the activity of the immune system (IS). The parasite can be in two different forms in the bloodstream: asexual form and sexual form. The asexual form is the one which destroy the erythrocytes and it is the causant of the symptoms. The sexual form is the responsable for the transmission.
Some parameters can be modified and observe the effect on the concentration of parasites in the bloodstream.
This work was made in collaboration with the professor Dr. Néstor V. Torres Darias.
T cell invasion by HIV, by Guido Santos
Reference: Santos G, Valenzuela-Fernández A, Torres NV (2014) Quantitative Analysis of the Processes and Signaling Events Involved in Early HIV-1 Infection of T Cells. PLoS ONE 9(8): e103845. doi:10.1371/journal.pone.0103845. Published model available here (http://journals.plos.org/plosone/article/asset?id=10.1371%2Fjournal.pone.0103845.PDF).This is a simulator of the invasion ability of the HIV of T lymphocytes. The virus needs to create an aggregation of actin filaments in the point of entry to facilitate the formation of a pore. This aggregation of actin is called actin CAP. The model simulates the formation of this CAP during the time before invasion. The CAP needs to present a peak and then it has to be removed to facilitater the entry of the virus. Some molecules from the lymphocyte can be increased or decreased to analyze the effect on the CAP: Filamin: Protein linking actin to receptor.
Receptors: molecules that triggers signal to formate the CAP.
Actin: molecules forming the CAP.
Moesin: protein linking actin to cell membrane.
Cofilin: actin severin protein.
This work was made in collaboration with professor Dr. Néstor V. Torres Darias and Dr. Agustín Valenzuela.
Cytokine production during lung inflammation
Guido Santos Rosales.The model simulates the production of the cytokines IL-6 and IL-10 through the activation of the NFkB signalling pathway in lung infection .
ATP/ADP model in glycolysis
A model that simulates complex dynamical behaviour from a simple metabolic reaction occurring in the glycolysis. The reaction of the Phosphofructokinase to transform fructose 6-6 into fructose 1,6 biP using ATP and producing ADP.K0: velocity of production of ATP.
K1: rate of linear transformation of ATP into ADP.
K2: rate of no linear transformation of ATP into ADP.
K3: rate of clearance of ADP.
This is a toy model built as an educational source for modelling teaching.
Haz clic para configurar HTML personalizado
Click to set custom HTML
Simulador de órbitas de planetas - Matlab | |
File Size: | 6 kb |
File Type: | m |